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X. On the Sextactic Points of a Plane Curve. By A. Cayiey, F.R.S.

Received November 5,—Read December 22, 1864,

It is, in my memoir “On the Conic of Five-pointic Contact at any point of a Plane
Curve” ¥, remarked that as in a plane curve there are certain singular points, viz. the
points of inflexion, where three consecutive points lie in a line, so there are singular
points where six consecutive points of the curve lie in a conic; and such a singular
point is there termed a ‘“sextactic point.” The memoir in question (here cited as
¢ former memoir”) contains the theory of the sextactic points of a cubic curve; but it is
only recently that I have succeeded in establishing the theory for a curve of the order m.
The result arrived at is that the number of sextactic points is =m(12m—27), the points
in question being the intersections of the curve m with a curve of the order 12m—27,
the equation of which is
(12m*—54m~+-57)H Jac. (U, H, Q5)
+(m—2) (12m—27)H Jac. (U, H, Q)
+40(m—2) Jac. (U, H, ¥ )=0,

where U=0 is the equation of the given curve of the order m, H is the Hessian or
determinant formed with the second differential coefficients (a, b, ¢, f, ¢, &) of U, and,
(A, B, C, I, & A) being the inverse coeflicients (A=bc—f", &c.), then

‘Q:(ga 353 @a .:Va ®9 %?Iam ay? az)zH,

Y=(4, 3, ¢, F, & 1Yo, 9,H, 0,H)*;
and Jac. denotes the Jacobian or functional determinant, viz. |
Jac. (U, H, ¥)= 0,U,9,U,d,U |,
0, H, 9, H, 0, H
o ¥,0,¥, 0¥
and Jac. (U, H, Q) would of course denote the like derivative of (U, H, Q); the sub-

scripts (s, §) of Q denote restrictions in regard to the differentiation of this function,
viz. treating  as a function of U and H,

Q=3 %, ¢, F, 6 BY, 0, d, f', 2", 2¢, 2'),
if (o, ¥, ¢, f', ¢', ') are the second differential coefficients of H, then we have
9,0=(04d, .. d,..) (=02.25)
+( 4, .. Y04, ..) (=9,Q%);

* Philosophical Transactions, vol. exlix. (1859) pp. 871—400.
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viz. in 9,07 we consider as exempt from differentiation (&, ', ¢, /', ¢, #) which depend
upon H, and in 9,Q5 we consider as exempt from differentiation (4, B, €, F, &, )
which depend upon U. We have similarly

| 9,02=2,27+93,Q, and 3,0=03,05 40,05 ;
and in like manner B

Jac. (U, H, Q)=Jac. (U, H, Qg)+Jac. (U, H, Qg),

which explains the signification of the notations Jac. (U, H, Qy), Jac. (U, H, Qg).

The condition for a sextactic point isin the first instance obtained in a form involving
the arbitrary coefficients (A, w, v); viz. we have an equation of the order 5 in (2, p, »)
and of the order 12m—22 in the coordinates (2, y, z). But writing S=Az+uy-+rz, by
successive transformations we throw out the factors 3% 3, 3, 3, thus arriving at a result
independent of (2, w, v); viz. this is the before-mentioned equation of the order 12m—27.
The difficulty of the investigation consists in obtaining the transformations by means of
which the equation in its original form is thus divested of these irrelevant factors.

Article Nos. 1 to 6.—Investigation of the Condition for a Sextactic Point.
1. Following the course of investigation in my former memoir, I take (X, Y, Z) as
current coordinates, and I write
T=(xYX,Y, Z)=0
for the equation of the given curve; (2, y, z) are the coordinates of a particular point
on the given curve, viz. the sextactic point; and U, =(xY, », 2)", is what T becomes
when (@, y, z) are written in place of (X, Y, Z): we have thus U=0 as a condition
satisfied by the coordinates of the point in question.
2. Writing for shortness
DU =(Xb,4Yo,+70,) U,
D*U=(X0,4Y0,+72,)’U,
and taking II=aX+40Y 4 cZ=0 for the equation of an arbitrary line, the equation
D*U—-IIDU=0
is that of a conic having an ordinary (two-pointic) contact with the curve at the point

(#, y, z); and- the coefficients of II are in the former memoir determined so that the
contact may be a five-pointic one; the value obtained for IT is

=3 ¢ DH+ADU,
where

’ 1
A=§—ﬁ§(—3QH+4\I’).

3. This result was obtained by considering the coordinates of a point of the curve as
functions of a single arbitrary parameter, and taking

r+de+id e+ §de+Fed's, y+ &e., 2+ &e.
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for the coordinates of a point consecutive to («, 7, z); for the present purpose we
must go a step further, and write for the coordinates ’

o do+- o4 b alzd“x-l-ﬁﬁdsﬂ«',
Y+ dy +5d%y +50% +5d"Y +raod
ttdz+3d% +5d% +5'1d' ﬁﬁd? .
4. Hence if
0,=dx0,+dyd,~+dz3,, 0,=d*»9,+ d*0,+d’20,, &c.,
we have, in addition to the equatiohs
U=0,
0,U=0,
(1+20,)U=0,
(034 390,0,+0,)U=0,
(0146030, 49,0, + 30;+0, )U 0,
of my former memoir, the new equation
(934-10930,+10079,+159,02+59,0,+100,0,-+09,) U=0,
and in addition to the equations, (P=az-4by-+cz),
—  (m—2)0jU+4P.30jU=0
— 3 (m— 1)B3+ 8(m—2)9,0,]U+4P.§(0}+30,0,)U+09,P.40;U=0,
2[(m——l)(B“—]—66232)—|—(m 2)(49,0,4 393 )]U
+(01+ 6030, + 40,0, +832)U+B P.4(03480,0,)U+40,P. 10iU=0,

giving in the first instance

P=2(m—2),
2U
3,P= (al+sala2)U s U (31+30,3;)U
22U W 23U

and leading' ultimately to the before-mentioned Value of TI, we have the new equation
—a%5 [(m—1)(07+100{0,41003,+150,0; )-|—(m-—2)(5b;a4+103233)]U
+ P.m(a5+]0338 +100%9,+150,0; +59,0,+100,0,) U
+ 9°,P.5 (0i+ 60%0,+ 49,0,4 393U
+%0,P. § (0i+ 80,0,)U

+30,P. 1 92U=0.
582
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9. This may be written in the form

—2[(m—1)(3:+ 1039, 41092, +159,32) -+ (m—2)(53,3,4-103,2,)]U

+ P 541007, +10972,4-15d 3z +52,9,4109,3,) U
+ 52,P( did 63D, + 43,9,+ 39U

+103,P( 3+ 89,2,)U

+103,P( U)=0;

or putting for P its value, ==2(m—2), the equation becomes
- 2(03+1000,+10070,+159,02)U
+ 59,P(0j+ 6070,4 40,0,+ 30; )U
+100,P(03+ 30,0,)U
+100,P.0:U=0;
or, as this may also be written,
2(93+10050,4100%9,+159,0;)U
+59,P.9,U+4100,P.9,U +100,P.3,U=0.
6. But the equation
DH4ADU,

==

n=2

which is an identity in regard to (X, Y, Z), gives
3.P=3% .1,

9,P=1% $3,H+ 43,1,

3,P=2 7O,H-+A3,U;

and substituting these values, the foregoing equation becomes
2(93+10070,+10070,+4159,0;)U
+(59,U3,H+103,U0,H +100,U0,H) —1}{- +A.209,U0,U=0;
or putting for A its value, = 9—I11—3(—3£2H+4\P), and multiplying by $H? this is

9H?(3%+100%,+10070,+150,0;)U
+15H (3,Ud,H+420,U0,H 4 20,U0,H)

+ g (—3QH+4¥).100,U2,U=0,

which is, in its original or unreduced form, the condition for a sextactic point.
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Article Nos. 7 & 8.—Notations and Remarks.

7. Writing, as in my former memoir, A, B, C for the first differential coefficients of U,
we have Byr—Cu, Ch—Ay, Ap—Bn for the values of de, dy, dz, and instead of the
symbol J) used in my former memoir, I use indifferently the original symbol 9,, or write
instead thereof 0, to denote the resulting value

9,(=09)=(Br—Cw)d,+4(Cr— Av)o,+(Au—DB2r)o,,
and I remark here that for any function whatever 2, we have
Q= A, B, C =Jac. (U, 3, Q),

Ay Wy ]
2.0, 3,9, 2.0

where y=ar-+uy+rz. 1 write, as in the former memoir,

*=(4, B, ¢, I, 6 I\ w, v)*;
V=(4, 3, €, ¥, & B>, p, vX3., 9,, 9,),

which new symbol V serves to express the functions II, 00, occurring in the former
memoir; viz. we have II=2V®, O0=2VH, so that the symbols II, O are not any
longer required.

8. I remark that the symbols 0, V are each of them a linear function of (9,, 9,, 3,),
with coefficients which are functions of the variables (2, 7, z); and this being so, that
for any function IT whatever, we have

o(VII)=(0.V)II+0oVII,

viz. in O(VII) we operate with V on II, thereby obtaining VII, and then with ® on VII;
in (9. V)II we operate with 0 upon V in so far as V is a function of (z, 9, z), thus
obtaining a new operating symbol 9.V, a linear function of (9,, 9,, 9,), and then
operate with 0.V upon IT; and lastly, in 9VII, we simply multiply together d and V,
thus obtaining a new operating symbol oV of the form (9,,9,, 9,)?, and then operate
therewith on IT; it is clear that, as regards the last-mentioned mode of combination, the
symbols 9 and V are convertible, or 0V=V09, that is, oVII=V0oIIL.

It is to be observed throughout the memoir that the point (.)is used (as above
in 9.V) when an operation is performed upon a symbol of operation as operand; the
mere apposition of two or more symbols of operation (as above in 0V) denotes that the
symbols of operation are simply multiplied together; and when 0V is followed by a
letter IT denoting not a symbol of operation, but a mere function of the coordinates,
that is in an expression such as 0V1I, the resulting operation 0V is performed upon IT
as operand ; if instead of the single letter II we have a compound symbol such as HU
or HVY, so that the expression is OHU, 0HVY, 9VHU or oVHVY, then it is to be
understood that it is merely the immediately following function H which is operated
upon by 0 or 0V in the few instances where any ambiguity might arise a special
explanation is given.

and also
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Article Nos. 9 to 11.—First Transformation.
- 9. We have, assuming always U=0, the following formulz (see post, Article Nos. 31
to 33):—
(074+1030,+10030,+150,05)U
32
== {(27Tm*—96m 4 81)HOD+(17m*—56m + 51)<I>BH}

+ o (= 14m—22)@. V)H —(10n—18RVH}

34
+ =iy (00}
0,Ud,H +20,U9,H+-23,Ud,H
=-——(m_3f1)4 {(—6m*+18m—12)HD D+ (— 17m?4-60m— 55 HDID}

+(7,7§_31?{ (2m—2)H(o. V)H +(8m—16)dHVH}

+ gy — OO},

’34
=15

10. And by means of these the condition becomes

0= 3H1)4{(153m —594m 549\ D (— 109m2+896m+366)®BH}

3,U2,U= HOH.

,+(m 4{( —96m-+168)H(D . V)H+(—90m-+162)HOVH- (120m—240)0HVH)

+ 1)4{9H23&2—45HQBH+40\I'3H},

"being, as already remarked, of the degree 5 in the arbitrary coefficients (A, w, v), and of

‘the order 12m—22 in the coordinates (z, 7, 2).
11. But throwing out the factor 3% and observing that in the first line the quadric

“functions of m are each a numerical multiple of 51m*—198m 183, the condition becomes

0= (51m*—198m-+183)H:(3HID—203H)
49 {(—96m—+168)H2(D . V)H+(—90m+162)HDVH +(120m—240)3HVH)

+3*{9H*0Q—45HQOH +40¥VoH}.
Article Nos 12 & 18.—Second transformation.

12. We effect this by means of the formula
(m—2)(3HoP—2P0H)=—J Jac.(U, d, H), . . . . (J)*

* (J) here and elsewhere refers to the Jacobian Formula, see post, Article Nos. 34 & 35.
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for substituting this value of (3Ho®—2®P0H) the equation becomes divisible by J;
and dividing out accordingly, the condition becomes

9__
_51m 198m+183 (U CI) H)

m—2

+(—96m+168)H2(3 . V)H +(— 90m—|—16Z)H23VH+(120m—24O)HBHVH
+9(9HQ — 45 HOIH -+ 40WdH)=0.

18. 'We have (s¢e post, Article Nos. 36 to 40)
Jac. (U, &, H)=—(0.V)H;
and introducing also 0. VH in place of 9VH by means of the formula
oVH=03(VH)—(5.V)H,
the condition becomes

(51m2—198m 183 Vs
—— —(6m—6) I3 . V)

+(—90m+162)HD(VH)  +120(m— 2)HBHVH
+3(9H0Q—45HQoH 4 40WoH)=0,
or, as this may be written,
(45m*—180m+171)H*(0 . V)H
+(—90m+162)(m—2)H*0(VH)+-120(m—2))HOHVH
+(m—2)¥(9HDQ—45HQIH 4-40PdH)=0,

.Article Nos.‘ 14 to 17.—Third tmngformation.

14. We have the following formulee,
YJac. (U, VH, H)—(5m—11)0HVHA4(3m—6)Ho(VH)=0, . . . . (J)
SJac. (U, V, HJH—(2m—4 OHVH+(3m—6)H(0.V)H=0, . . . . (J)
in the latter of which, treating V as a function of the coordinates, we first form the

symbol Jac. (U, V, H), and then operating therewith on H, we have Jac. (U, V, HH;
these give

5m— ]-I)BHVH —( ~~~~~~ JaC (U VH H)

HQ.V)H= 2IHVH—

HO(VH)= 37"

( Jac (U, V ,H)H;

and substituting these values, the resulting coeflicient of HOHVH is

( 45m*—180m+171)%
5m 11

+(—90m+162)

+120(  m-—=2),
which is =0.
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15. Hence the condition will contain the factor 3, and throwing out this, and also the

constant factor

—> it becomes

(—15m*+60m—567)H Jac. (U, V , H)H
+(30m—564)(m—2) HJac. (U, VH, H)
+(m—2) (910 Q—45HQ0H 4 40¥oH)=0.

16. We have
0, (VH)=(9,.V)H+9,VH,

viz. in (9,. V)H, treating V as a function of (#, v, z) we operate upon it with 9, to
obtain the new symbol 9, .V, and with this we operate on H; in 9,V we simply mul-
tiply together the symbols 0, and V, giving a new symbol of the form (32 9,3,, 9,9,)
which then operates on H. We have the like values of 0,(VH) and 9,(VH); and
themnce also .
Jac. (U, VH, H)= Jac. (U, V, H)H+ Jac. (U, VH, H),
viz. in the determinant Jac. (U, V, H) the second line corresponding to V is 9,.V,
0,.V,0,.V (V being the operand); and the Jacobian thus obtained is a symbol which
operates on H giving Jac. (U, V, H)H; and in the determinant Jac. (U, VII, H) the
second line is 0,VH, 0, VI, 9,VH (V being simply multiplied by ?,,9,, d, respectively).
17. Substituting, the condition becomes
(—16m*+60m—57) HJac. (U, V, H)H
+(30m—54)(m—2){H Jac. (U, V, HYH+ Jac. (U, VH, H)}
+ (m—2) {9H*0Q—564HOOH +40¥oH} =0,
or, what is the same thing,
(16m*—54m+51)H Jac. (U, V , H)H
+(30m—>54)(m—2)H Jac. (U, VH, H)
+(m—2){9H*0Q—45HQOH + 40VoH } =0.

Article Nos. 18 to 27.—Fourth transformation, and final form of the condition for a
Sextactic Point.

18. T write
(5m—12)Q0H —(8m—6)H3Q=8Jac. (U, Q, H) . . . . . (J)
QoH+ HoQ= o(2H),
and, introducing for convenience the new symbol ‘W,
—5Q0H + - HoQ=W,
so that

bm—12, —(3m—6), 9Jac.(U,Q, H) | =0,
1, 1, 3.QH
-5, 1, W
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or what is the same thing,

(8m—18)W +63 Jac. (U, Q, H)+(10m—18)3(QH)=0,

we have
W=HIQ—5QH =72 Jac. (U, Q, H)— o=t 3(QH).
19. We have also
(81 —18)¥H — (3m—6)Hd¥ — 9 Jac. (U, ¥, H)=0, . . . . . (J)
that is
YOH 1) e,
and thence
9OHW 440U H
—9H?DQ—45HQIH + 40V H
=209 yr3 Q)+ L= g

s {—2TH Jac. (U, Q, H)+40 Jac. (U, ¥, H)}.

20. The condition thus becomes
(16m*—84m—+-51) (4m—9)H Jac. (U, V , H)H
+6(5m—9)(m—2)(4m—9)H Jac. (U, VH, H)
+3(m—2){ —3(bm—9)(m—2)Ho(QH)420(m—2)"HoW¥}
+(m—2)3{—27TH Jac. (U, Q, H)440 Jac. (U, ¥, H)} =0,
which for shortness T represent by
SHII+4(m—2)*S{—27TH Jac. (U, Q, H)+40 Jac. (U, ¥, H)}=0,
so that we have
= (5m*=18m+417)(4m—9)Jac.(U,V , H)H
+2(3m—9)(m—2)(4m—9) Jac. (U, VH, H)
+(m—2){—3(5m—9)(m—2)0(QH)+20(m—2)"3¥}.
21. Write
=(g,, 33,7 @,a fx ®’a %,IAa B7 C>27
where (A, B, C) are as before the first differential coefficients of U, and (&, ¥, ¢, £/, ¢', I
being the second differential coefficients of H, (@, ¥', &, F, &, ') are the inverse
coefficients, viz., Q{’:b’c'—ﬁ "2, &c.  'We have
—(m—1)0W,=(3m—6)(3m—T)0(QH)—(3m—T)0W (see post, Nos. 41 to 46),
that is
Q Q (m_'l)2
(OM-G)B(QH):(O’)T&—7)5‘1’—§ma‘1’1,
MDCCCLXY. 5F
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and thence |
O= (5m*—18m~+17)(4m—9)Jac. (U, V , H)H
+2(5m—9)(m—2)(4m—9) Jac. (U, VH, H)
+(m—2){(5m2—18m+17)a~1r+@—“—;—2:-(_§-7m—"1)a~14}=0.
22. Now

=@ 3%, C F 6 hYA, B, Cy, ¥.=,%,C,F, & BYA,B, oy,
and writing for shortness
E¥ =(od,. YA, B, C), F¥=(4,..YA, B, CY2Q, d¥, d2¢),
E¥,=(od,. YA, B, C), F¥=(T,..YA, B, €)Y0Q, 3%, 3¢C),

(we might, in a notation above explained, write E¥=3V¥;, F¥=10¥y, and in like
manner ¥, =0W¥,5, F¥,=13V¥, 5), then we have
OV =EV42FV¥, 3V =E¥ 42F¥,.
‘We have moreover
m

Juc. (U, VH, H) =—2—LE¥, } post, Nos. 47 to 50.
Jac.(U,V ,HH=— EV¥ , | post, Nos. 51 to 53.
23. The just-mentioned formule give
= —(5m*—18m~417)(4m—9)E¥
—2(5m—9)(m—2)(4m—9) 5o BV,

+(m—2)(5m*—18m+17)(EY +2F¥ )

that is
= —(3m—7)(5m2~187n+17) E¥

+2(m—2)(bm*—18m+17) F¥

(6m—9) (m—1)%(m—2)
+ 3m—7 EY,
_2(m—l)(m—2)(3‘m— 8)(5m—9) F,
3m—17 1

or, as this may also be written,
(Bm—T)=—(5m*—18m~+17){ —2(m—1)( m—2)F¥, +(Bm—=T)EV }
—(bm=—9)(m—2) { (m—1)(3m—8)F¥,4(3m— 7)(3m—8)F¥ —( m—1yE¥,}
+(25m*—103m+106)(m—2){ —( m—1)F¥,+ (3m—T)F¥ .
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24. But recollecting that
Q:(g, %‘J @3 Jfa ®9 gﬁ]{am Bg/) az)aH .
=@, B, €, T, 6, VY, U, ¢, 2", 2, W),

and putting
EQ=(0Q3,...X d,...) = (=0Qx),
FQ=(4,...Yod,...) (=0Qy),
we have, post, Nos. 41 to 46,
—2(m—1)(m-2) F¥, +(3m—TyE¥ =(3m—6)(8m—T)HEQ
(m—1)(8m—8)F¥,+ (8m—T)(8m— 8)F¥—( m—1)2E‘Pl=(SM—6)(3m—7)HFQ
—( m=1)F¥ + (Bm—T)F¥ - = (3m—T)QoH,

and the foregoing equation becomes
(3m—T)=—(dm*—18m+17) (3m—6) (3m—T)HEQ
—(5m — 9)(m—2)(3m—6) (3m—"T)HFQ

+( m— 2)(26m*—103m—106)(3m—"7)Q0H.
25. But we have Co

3 Jac. (U, H, Qz)— (3m—6)HEQ+(2m—4)QdH=0, . . . . (J)
3 Jac. (U, H, Q) —(3m—6)HFQ+(3m—6)QH=0, . . . . (J)

that is

3(m—2)HEQ=2(m—2)QdH+3 Jac. (U, H, Qz),
3(m—2)HFQ=(3m—8)QdH+9 Jac. (U, H, Qg),

and we thus obtain

O=—(6m*—18m-+17){2(m—2)QH+3 Jac. (U, H, Qz)}
—(bm—9)(m—2) {(8m—8)QdH+3 Jac. (U, H, Qf)}
+(25m*—103m+4106)(m—2)QoH,

where the coefficient of (m—2)Q0H is

—(10m*— 36m--34)

—(5m—9)(8m—38)

+(256m*—103m-+106),

which is =0. Hence

= —(5m— 18m+17)8 Jac. (U, H, Qz)
—(5bm—9)(m—2) ¥ Jac. (U, H, Qp).
26. Substituting this in the equation '
8HII+(m—2)*{ —27H Jac. (U, Q, H)+40 Jac. (U, ¥, H)} =0,
the result contains the factor ¥, and, throwing this out, the condition is
SH{—(5m* 18m-+17)Jac. (U, H, Qz)— (5m—9)(m—2) Jac. (U, H, Q7)}
+(m—2){27H Jac. (U, H, Q)—40 Jac. (U, H, ¥)}=0,
9¥F2
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or, as this may also be written,
—(16m*—54m+-51)H Jac. (U, H, Q)—3(5m—9)(m—2)H Jac. (U, H, Qz)
+27(m—2) {HJac. (U, H, Q)+ H Jac. (U, H, Qg)}
—40(m—2) Jac. (U, H, ¥ )=0.
27. Hence the condition finally is
(12m*—54m+57) H Jac. (U, H, Qg)4(m—2)(12m—27)H Jac. (U, H, Qy)
—40(m—2)* Jac. (U, H, ¥)=0,

or, as this may also be written,

—3(m—1)H Jac. (U, H, Qz)+(m—2)(12m—27)H Jac. (U, H, Q)
—40 (m—2)*Jac. (U, H, ¥)=0, ‘
viz. the sextactic points are the intersections of the curve m with the curve represented

by this equation; and observing that U, H, HQ and ¥ are of the orders m, 3m—G0,
8m— 18 respectively, the order of the curve is as above mentioned =12m—27.

Article Nos. 28 to 30.—Application to o Cubic.

28. I have in my former memoir, No. 30, shown that for a cubic curve
0=(4, 35, C, ¥, & HY0o,,9,,9.)H=—25.U=0,

this implies Jac. (U, H, 2)=0, and hence if one of the two Jacobians, Jac. (U, H, Qg),
Jac. (U, H, Q5) vanish, the other will also vanish. Now, using the canonical form

U=a*+y*+2°+6lzyz,
we have

0=4,. .Jd,...)
=(yz—0a®, zx=Uy*, ay—02, Pyz—Ia*, Per—1ly*, Vay—12"Y
X —38Px, =38Py, —380Pz, (1420, (142F)y, (14+28)z2),
the development of which in fact gives the last-mentioned result. But applying this

formula to the calculation of Jac. (U, H, Qg), then disregarding numerical factors, we

have ' ,
0. Qo=(yz—00", ., . Pyz—1?, ., . X =32, 0, 0, (1428), 0, 0)

=—=3 (yz—1*)
+ (128 )(Pyz—la?)
=(—141")(2*+2lyz)=S0,U;
and in like manner
9,Q;==89,U, 9,0=%0,U,

and therefore
Jac. (U, H, Qg)=S Jac. (U, H, U)=0,
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whence also
Jac. (U, H, Q5)=0;

and the condition for a sextactic point assumes the more simple form,
Jac. (U, H, ¥)=0.
29. Now (former memoir, No. 32) we have
¥=(4, B, ¢, ¥, 6, HY0.H, o,H, 2 H)’
= (1488 (y°2* 22> +2%)
(=00 @+y+2)
F+(—=20—=501'=200) (2*+y°+2°)ayz
+(=1582—="T8P 1202772,
or observing that a°+y°+2° and 2yz, and therefore the last three lines of the expression
of ¥ are functions of U(=a’4y°+2°46lzyz) and H(=—"1(2"+9°+2°)+(14-20)ayz),
and consequently give rise to the term=0 in Jac. (U, H, ¥), we may write
Y=(14-80) (9’2’ +2°a*+a%°).
30. We have then, disregarding a constant factor,
Jac. (U, H, ¥)=Jac. (*+3*+2°, ayz, y°°4-2°2° +2%°)
= 2°, 9 7
Y2, 2, xy
PU+2), P+ Haty)
(Y =) +y( =) +(a"—y")
= (y'=) & —2")(«"—y")s
so that the sextactic points are the intersections of the curve

U=a*+y*+2*+6layz=0,
(¥ —2")(#"—a") (2" —y’)=0.

i

with the curve

Article Nos. 81 to 33.—Proof of identities for the first transformation.

31. Calculation of (94100j0,+410970,+4159,03)U.
Writing 9 in place of I, we have (former memoir, No. 20)

Ri+007.) U= e - ( —23,H— 32H+?’ﬁ’—‘—-ch-——VH)
But
—2,H="""Ho_ 2 vy, ] .
ormer memoir,

6m—14 Nos. 21 & 22;

6)(3m—17,
(m— 1)23VH+(m 1)Q

7
=1y HO—

_oH =8m
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and thence

(244637, U= mi_e—ﬁz(lSm2—66m+60)HCD
+ gy (—10m+18)VE

44
1@
whence operating on each side with 9,, =9, we have

(35 -+10%,+ 627, +122,02) U= (18m?— 661460 )(HOD -+ DIH)

(m 1)4
+ e (— 10m+18)((2.V)H+OVI)
+ O
We have besides (see Appendiz, Nos. 69 to T4),

9%, U= —i—:?{(Sm—ﬁ)Hb(D+(—m+3)CDBH}

(m
33
+ =y —(0.V)H},

$sz
B,B§U= mﬁ (—HBCI)-I- CDBH) M
and thence

(4%, +3a 2)U= (m 1)3{(90m-—21)HB(D+( —m+9)DH}

and adding this to the foregoing expression for

(01+10079,+-6070,+120,3;)U,

we have
(33 +102%0, 41092, +152,02) U=

= 14{(27/n — 96+ 81)HR® + (17m?—56m~+51)DOH}
+m{(—14m+22)@  V)H +(—10m+18)dV . H}

54
F 1y O

32. Calculation of
9,Ud,H +20,Ud,H+20,Ud,H.
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‘We have
$? 1 2%
0 U—( 1) 30,HH+90°H— —lHq)_milVH’ 9,H=0H,
0,U= (_m——_f)_é oH, 0,H=0,H,
32
32U=m H, BSH_ 1( 3m+6)oP— (I)aH—I-

for which values see Appendiw, No. 58.  And hence the expression sought for is

et (m— 1) +-2°H) — HO — 35V

= (m_
+2(m—1)dHd,H

+2H((—8m—+6)HIO—DIH+5(3 . V)H)},

which is
3.2

=fotpl S(m—1)OHD,H

+ (m—1)dH>*H
+ (—6m-+12)HdD—3HPIH}

33
-l-(—m—_l—)?,{2H(B .V H—-%0HVH}.
But we have, former memoir, Nos. 21 & 25,
d,H=—"=6) (3’”—6) He—_% Vi,

— (3m 6)(‘3m 7) 52
BH——m(m 1) H(I)—I— )QSVH (m_l)QQ

so that the foregoing expression becomes

=G 18{ — (8m—16)HOIH +$99HVH

_Bm—6)@m—7) HOH + s 1 SBHVH——*—“ (OH

m—1

- SHOOH —(6m—12)H*0d}

+W3_3—1—)3{2H(3.V)H—-%BHVH} ;

or finally
9,Uo, H+2B Uo,H+4-20,U0,H
1)4{( —6m’+18m—12)Hd P+ (—17m’+60m—>55)HOOH }

__(m

+ (m 4{(2m—2)H(B V)H4-(8m—16)0HVH}

+m{—QBH}-

’ (3. V),
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33. Calculation of 9,U0,U.
This is
34

Axrticle Nos. 34 & 35.—The Jacobian Formula.

34. In general, if P, Q, R, S be functions of the degrees p, ¢, 7, s respectively, we
have identically

P, ¢Q, R, S | =0,
9,2, 09.Q, 9o,R, 9.8
oP, 9,Q, 9R, 9,8
o.P, 9.Q 9.k, 9S8
or, what is the same thing,
pP Jac. (Q, R, S)—¢QJac. (R, S, P)+rR Jac. (S, P, Q)—sS Jac. (P, Q, R)=0.
Hence in particular if P=T, and aésuming U=0, we have
—qQJac. (R, S, U)+rR Jac. (8, U, Q)—sS Jac. (U, Q, R)=0.
If moreover Q=%, and therefore ¢=1, we have
—JJac. (R, S, U)4rR Jac. (S, U, §)—sS Jac. (U, 9, R)=0;
or, as this may also be written,

—9 Jac. (U, R, 8)+7R Jac. (U, 9, 8)—sS Jac. (U, 9, R)=0;
—%Jac. (U, B, 8)+7R0S—sSOR=0.

that is

35. Particular cases are

(2m— 4) POH—(3m—6)Ho® =8 Jac.(U,P ,H), ante, No. 12,
(6m—11)VHOH — (3m—6)Ho(VH)=% Jac. (U, VH, H), ” 14,
2m— 4)V:0H—(3m—6)Ho.V =3%Jac.(U,V ,H), ’ ’
(dm—12) QOH—(3m—6)H3Q =% Jac.(U,Q ,H), ” 18,
(8m—18) YoH—(3m—6)Ho¥ =y Jac.(U, ¥ ,H), ’ 19,
(2m— 4) QOH—(3m—6)HEQ =3 Jac.(U, Qg , H), ’ 25,
(Bm— 8) QOH—(3m—6)HFQ =3 Jac.(U, Qp , H),
where it is to be observed that in the third of these formule I have, in accordance with
the notation before employed, written 0.V to denote the result of the operation d per-
formed on V as operand. I have also written V:0H to show that_the operation V is
not to be performed on the following 0H as an operand, but that it remains as an
unperformed operation. As regards the last two equations, it is to be remarked that

the demonstration in the last preceding number depends merely on the homogeneity of
the functions, and the orders of these functions: in the former of the two formule, the

2 kb
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differentiation of Q is performed upon  in regard to the coordinates («, 7, #) in so far
only as they enter through U, and 2 is therefore to be regarded as a function of the
order 2m—4; in the latter of the two formule the differentiation is to be performed in
regard to the coordinates in so far only as they enter through H, and Q is therefore to
be regarded as a function of the order 3m—8. The two formule might also be written
(2m—4)Qo0H —(3m—6)HoQz =% Jac. (U, Qg, H),
(3m—8)Q0H — (3m—6)HoQs =% Jac. (U, Qg, H);

and it may be noticed that, adding these together, we obtain the foregoing formula,
(6m—12)QoH —(3m—6)HoQ =% Jac. (U, Q, H).

Article Nos. 36 to 40.—Proof of equation (0.V)H=Jac.(U, H, ®),

used in the second transformation.
36. We have

V=(@, ..\ @ X3, d,, d.)
=(40,+#0,+&0., Ko, +3B9,+30., &3, +I0,+EL3.32, w, ).

0=(Br—Cu)0,4(Cr—A»)0,+(Ap—DB2r)o,
=AP+pQ4R,

P, Q, R=Cd,—Bd,, Ad,—Cd,, Bd,—AD,.

Also

if for a moment

Hence
0.V=(Pa+4Qu+Ry).(30,4+Ho,+ 0., 1o, +B9,4 9., &o,+F0,+C0. 1A, &, »),
viz. coefficient of A* —P@D,+PEHd, + P&
- 2 v 29

and so for the other terms; whence also in (0.V)H the coefficients of A?, &c. are
(PQ0,+PHo,+PGo,)H, &c.
37. Again, in Jac. (U, H, ®), where ®=(4, 3, €, Jf, &, B, w, v)*, the coefficients
of 22, &ec. are Jac. (U, H, @), &c.; and hence the assumed equation
(3.V)H=Jac.(U, H, ®),
in regard to the term in 27 is

(PAR,+P#d, + P&, H=7Jac. (U, H, Q),

and we have
Jac.(U,H,d)=| A , B , C |
oH, 9,H, d3H
9, , 9, , O, ‘
=[0,H(C3,—B9,)+09,H(Ad,—Cd,)+0,H(Bo,—Ad,)|d

=(0,H.P+0,H.Q+40,H.R)Q;
MDCCOLXV. 5a
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so that the equation is
P30, H+P#Ho H4+PEBd H
=P30,H+4 QJ0,H+RJdH,

or, as this may be written,
[(Bd,— 03,/ — (C3,— A2, )AJ0,H
+[(Bo,—Cd,)&— (Ad,—B9,)d]o,H=0.
38. The coefficient of 9, H is - ‘
=A3,3+ B3R —C(3,942,3),
which, in virtue of the identity, post, No. 40,
0,4+9,89+9.6=0,
=A09,4+Bo.H+Co,6.
And in like manner the coefficient of 0 H

=—(A3,A+B3,H+C3, B),

is

so that the equation is
(Ad,+B2,+00,6)d,H—(Ad,3+Bd,H+C0,6)d,H=0.

39, But we have .
Aa+Hh+Gg=H,

Ah-+Bb+Ef =0,
Ag+Bf+Ee=0,

or multiplying by #, , # and adding,
(m—1)(@AA+HB+EC)=aH ;

(m—1)(@h+Tb+ Go+AD,A-+Bd B +Cd,8)=ad,H,
(m—1)(AD,A+B3,B+C2,6)=0d,H ;

and in like manner

(m—1)(Ad,A+Bd,H +Cd.6)=4d H,

whence the equation in question. - The terms in 2* are thus shown to be equal, and it
might in a similar manner be shown that the terms in p» are equal ; the other terms will
then be equal, and we have therefore

(0.V)H=Jac. (U, H, ).
9. 4+0,8+0.6=0
assumed in the course of the foregoing proof is easily proved. 'We have in fact
0. A+, +3.6=3,(bc—1*)+d,(fy—oh)+3,( fh—bg)
=0(2,0—2,9)+ D5~ ,)
FA—20,/+0,94+3.4)+9(d,f—0.0)+ 1 —d,0+3,f),

whence also

that is

40. The identity
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where the coefficients of 4, ¢, f, g, & separately vanish: we have of course the system
0,449, +9.6=0,
0.8 +9,3+0.9=0,
0,649, +0.£=0.

Article Nos. 41 to 46.—Proof of identities for the fourth transformation.

41. Consider the coefficients (a, b, ¢, f, ¢, k) and the inverse set (@, B, €, I, &, H),
and the coefficients (o', ¥, ¢, f, ¢, /'), and the inverse set (&, ¥, &', I, &, H'); then
we have identically

(@, .. X, y, 24, . Xa,..)— (4, .. Yoz +hy 49z, ..)
=(d, .. Y, vy, 24, . Y, ..)—(Q, . Ldz+ly+gz, . .),
where (4, . . Y@, ..) and (g, ..](a", ..) stand for
@, %, ¢, 7,6, HYea,b,c, 2f, 29, 21)

(g, 95, @, Ja ®> %?Iala b,’ Gls 2fl’ 29" 2k’)

and

respectively.

42. Taking (@, b, ¢, f; ¢, h), the second differential coefficients of a function U of the
order m, and in like manner (@, ¥, ¢, f', ¢, #'), the second differential coefficients of a
function U’ of the order m', we have

m(m —1)U (4,..X0,, 9,, 0.)U' —(m —1)X4, ..x(0,U, o,U, 0, U )
=m/(m'—1)U" (4, ..X0.,, 9, 0,)'U —(m'—1)¥(4, ..}0,U’, 0,U’, 5,U')%
and in particular if U’ be the Hessian of U, then m/'=3m—6.

43. Hence writing

Q=(4,..Y9,,9, 0)H, ¥=(4,..Y0,H,oH,oH),
Q,=(@, .. X0, 3,, 9.)'U, ¥,=(d,..Xd,U,d,U, d,U),

we have
m(m—1)UQ,—(m—1)y¥,=(3m—6)(8m—T)HQ—(3m—"T)"¥;

or if U=0, then
—(m—1y¥,=(8m—6)(3m—T)HQ—(Bm—T)"¥;

whence also k
—(m—1)d¥,=(3m—6)(3m—T)(HOQ+QoH)—(3m—T)0¥,

which is the formula, ante No. 21.
44. Recurring to the original formula, since this is an actual identity, we may
operate on it with the differential symbol O on the three assumptions,—
1. (a,b,¢,f,9, %), (A4,8B,C, F, €, ) are alone variable.
2. (@, 8, ¢, f, ¢, 1), (A, %, T, F, &, H) are alone variable.

3. (&, y, #) are alone variable.
5a2
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‘We thus obtain :
(%a, . Y&, 9, 2)((4, . Ya, ..) =(d, .. Y&, 9, 2)*(09, .. X, ..)

+(a, .. Yz, 9, 2)(4, . .Y 0a, ..) —(04, . Yaxv+Hy+g'z .. ),
—2(@, . Yax+hy-+gz, . Y ada+ydb+2d¢, ..)
(a, . Y&, y, 2)'(04, . Ya, ..) =(od, .. X, v, 2)X(4Q, .. Y, ..)
— (09, . Yar+hy+gz, ..} +(d, .. X, y, 2)X(Q, .. Jod, ..)
—A@, . Xda+y+gz, . Xadd +ydH+2dg, ..),
2(a, . X, y, 2Y0x, 0y, 02)(A, . . Ya, ..) =2(d, . .Y, y, 2Y0x, 9y, 02)(Q, . .Y, ..)
—2(q, . Yax+hy+gz, . Y adx+hoy4 g0z, .) —2(Q, Ydo+Hy+g'z, . Y aBa+1d3y+g0z, ..).

45. If in these equations respectively we suppose as before that (a, J, ¢, f; g, %) are the
second differential coefficients of a function U of the order m, and (<, ¥, ¢, f*, ¢, F)
the second differential coefficients of a function U’ of the order m';. and that (A, B, C),
(A!, B, C) are the first differential coefficients of these functions respectively, then after
some easy reductions we have

(m—1)(m—20U(@, .. Xa, ..) = wm—1)UQQ,..Xd,..)
+m(m—1)U@, ..X3a, ..) —(m'—1)3@, .. XA, B, C'),
—2(m—1)(m—2)(@, ..XA, B, CY3A, 3B, 3C)

m(m—1)UQRA, .. Xd,..) = (m'=1)m'—2dU(Q,..Xd, ..)

—(m—17QR4, .. XA, B, C) +m!(m! —1)U'(Q, ..X2d, . .)
—2(m'—1)(m' —2)(@, . YA, B, CYRA, 3B, 3C).
2(m—1)dU(@, . .Xa, ..) = 2m/'—1RU(@, .. Xd,..)
—2(m—1)(@, .. XA, B, CYA, 9B, 3C) —2(m'—1)(@, .. YA, B, CYdA", 3B, 3¢),

equations which may be verified by remarking that their sum is
m(m—1)(dU(@, . Xa, ..)+ U@, .. YDa, ..)+(0d, . Ya, ..)]}
—(m—=1)*{34, ..JA, B, C)+(d|, . . XA, B, CY04A, 0B, 0C)}=m/(m'—1) &c.,
viz., this is the derivative with 0 of the equation
m(m—1)U(@, . Ya, ..)—(m—1)%(D, .. XA, B, C)=mn/(m'—1) &c.
46. Taking now U'=H, and therefore m'=3m—6; putting also U=0, 9U=0, and

writing as before
E¥ =(0Q, ..YA, B, C)?,

F¥ =(d,.. YA, B, CYA/, 9B, 3C),
E¥,=0d, ..XA, B, C?,

F¥,=(@, .. XA, B, CI?A, 3B, 30),
EQ =04, ..Xd, ..),

FQ =(3,.. Xod, ..),
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then the three equations are

—9(m—1)(m—2)F¥,=(3m—6)(3m—"T)HEQ— (3m—T7)E¥,

—(m—1)E¥ —(3m—T)(3m—8)QdH
+ (3m—6)(3m—TYHFQ—2(3m—T7)(3m—8)F¥,
—9(m—1)F¥, —=2(3m—"T)QH—2(3m—T)F¥,

whence, adding, we have
—(m—1)(E¥,4-2F¥,)=—(3m— TP(E¥+-2FY¥)

-~ 4 (3m—6)(3m—T){ QH+H(EQ+FQ)}
at 18

—(m—1)0Y, =—(8m—"1T)d¥+(3m—6)(3m—"T7)0.QH,
which is right).
And by linearly combining the three equations, we deduce
(8m—6)(3m—"T)HEQ=—2(m—1)(m—2) ¥¥, +(3m—T)EY,
(Bm—"T)Q0H= —(m—1) F¥, 4 (3m—T) Fy,
(3m—6)(3m—THFQ= (m—1)(3m—8)F¥i+(3m—T7)(3m—8)F¥— (m—1) E¥,,
which are the formule, ante, No. 24.

Article Nos. 47 to 50.—Proof of an identity used in the fourth transformation, viz.,

Jac. (U, VH, H)=— gL F¥,,
or say
Jac. (U, I, VH)= 2= (d,..YA, B, CJ?4, 9B, 3C).
47. We have

V=(@, .. X% t ¥XD» 05 3.)

=((ga %?7 ®I7\’ 22 V)a (%?a 35, Jflka oy V): (®9 Jfa @I)‘a oy V)](aa:a ay’ az) 5

or, attending to the effect of the bar as denoting the exemption of the (4, ..) from dif-
ferentiation,

Jac. (U, H, VH)= (4, B, &Y, , ») Jac. (U, H, 3,H)
(@, B, FI p, ) Jac. (U, H, d,H)
+(&, F, T, p, ») Jac. (U, H, d,H).
48. Now -
Jac.(U, H, 3,H)=5—— Jac. (U, 03, H+42,H+20.H, 3.H),
and the last-mentioned Jacobian is
=3,H Jac. (U, #, 9,H)+3,H Jac. (U, y, 9,H)+0,H Jac. (U, 2, 0. H)
4y Tac. (U, 3,H, 3,H)+zJac. (U, 3,H, 3.H),
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where the second line is
=—yJac. (U, o, H, 0,H)+z Jac. (U, 3,H, d3,H),

or writing (A', B, () for the first differential coefficients and (@, ¥, ¢, 1", g, W) for the
second differential coefficients of H, this is

=—y | A, B, C +z A, B C
al, hl, gr' gf’ fl, 0’
kl, bl, ff al, }2;’, gl
=—y(&, F, TXA, B, O)+=(®, ¥, JY4A, B, O).
The first line is
=]A, B, C
A, B, C
al_’ B, gl
=A(BYy—CW)+B(Cd —A'y")+C(A'H —Bd'),
or reducing by the formulz,
e (Bm=T)A', B, O)=(da+Hy+g'z, Na+8y+f2 gotfly+cz),
is is
1 . .
=3m—7 1A= @y+H2)+B(—Fy+3')+C(—LCy+ F'2)}
=5y 1—9(®, ', €YA, B, O)-+:(¥, B, FXA, B, O)}.

Hence we have

Tac.(U, B, 0.H) =g (15,7 ) (~9(8, F, €XA, B, O)+(@, B, XA, B, ©)

=5m=7 (—y(8, T, CAA, B, O)+2(8,, FXA, B, C)
and in like manner
Tac.(U, H, 3,H)=, {—x(@, B, GYA, B, O)+2(@, F, CYA, B, C)},
Jac.(U, H, 3,H) =y, {—a(B, 3, FXA, B, C)+y(@, B, &YA, B, C)}.

49. And we thence have
Jac. (U, I—l, vH)z.___L__ (goﬁ?, ®I}~af"'9 V) 9 (ﬁ?,ﬂﬁ,f]{?\,‘w,v) b (gafa @Iha 2294 ) i,

T (@, %, YA, B, C), @, 3, FYA, B, C), (6, F, TYA, B, C)
& ’ K s %,
or multiplying the two sides by
H, = a b, g |,
hy b, f

g9 | ¢
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the right hand side is

_ 1 W, Hy , H
Sm—17 X , Y , %
(m=1)A, (m—1)B, (m—1)C,
which is
m—1
A, B, C,

if for a moment

X=(@, ... YA, B, CXa, h, g),
Y=(@, .. XA, B, CY%, 8, f),
/ =(g’, .o IAa B7 CIQ’f’ 0)'

50. Hence observing that these equations may be written
X=(4, ... XA, B, CY0.A, 9,B, 9,C),
Y=(4,.. YA, B, CY3,A,9,B, 3,0),
Z=(4,...JA, B, C)Y0.A, 9,B,9,C),

and that we have
0= | A, w, v

% 0, O,
A‘) B) C)

we obtain for H Jac. (U, H, V, H) the value
-1
_—_H——-—;’jn — (@, ... YA, B, CJPA, 3B, 9C),

or throwing out the factor H, we have the required result.

Article Nos. 51 to 53.—Proof of identity used in the fourth transformation, viz.,
Jac. (U, V, H{H=—E¥,

Jac. (U, H, V)H=(34, ...JA!, B, C').

or say
51. We have
V=((g9 %?’ ®7I7‘3 {"‘7 V)a (%}, 357 JIA-, lwa V), (®7 ;V) @IN f“a V)Iam'ays az)a

and thence

3.V =(.4, 3.1, 3.6Y%, 1, »), 2.8, 3.3, 3.9 % s ), (2.8, 3.F, 2.LY % 1, )i 3y 34,

and

(2, V)H=((.4, 3.3, 0.8X%, s, »), (0,8, 0.3, 0. Y, s, ), (3.8, 3.5, LY, s »)YA, B, C),
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with the like values for (0,. V)H and (0,. V)H. And then
Jac. (U, H, V)H= A, B ) C
A, B, ¢
(0,.V)4, (o,.V)H, (9,.V)H,
in which the coefficient of A” is
=(Co,—B2.)(Q, H, &Y, w,);
or putting for shortness
(Cd,—Bo,, Ao,—Co,, Bo,—Ad,)=(P, Q, R);

(P4, PH, P&, w, »).

the coefficient is

52. We have

o=(Pr+Qu+Ry),
and thence

coefficient A"—0d=(PQ, PR, P& 4, , »)— (P4, Qd, RAY A, @, »),
which is
= w{(Co,—Bd.B— (M. —C2.)d}
+v {(Co,—B2,)6—(Bo,—J0,)d},

=— A A-BOH+CR.A4+0H)
= —(AA+BOH +C2.6)=——"ad H,

where coefficient of w is

and coefficient of » is )
=4(A0,d+Bo,H+Co,6)= mxByH,
so that 1
coefficient A”—0G= —-—— a(u0,H —»0, H).

63. And by forming in a similar manner the coefficients of the other terms, it appears

that
tha - Jac. (U, H, V)H—(3, ... XA, B, O')

=———(AptBy+C2)| A, B , C

m—1
A,
3,H, d,H, dH.

b

or since the determinant is

we have the required equation,
Jac. (U, H, V)H=(04g, .. .JA', B, C')~

This completes the series of formule used in the transformations of the condition for
the sextactic point.
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AprprENDIX, Nos. 64 to T4.
For the sake of exhibiting in their proper connexion some of the formule employed

in the foregoing first transformation of the condition for a sextactic point, I have

investigated them in the present Appendix, which however is numbered continuously
with the memoir.

54. The investigations of my former memoir and the present memoir have reference
to the operations

0,=dx 9,+dy 9o,+dz9,,
0, =20, 4?0, +d*20,,
0, =70, +d*%0,+d’z0,,
&e.,

where if (A, B, C) are the first differential coefficients of a function U=(xYx, y, 2)",
and A, w, » are arbitrary constants, then we have

dr=Br—Cu, dy=Ch—Ay, dz=Ap—Bxr;
so that putting »
0=(Br—Cuw)d,+(Cr— Av)d,4(Ap—B1r)3,

= A, B, C
Ay o, v
am ay) Bz’

we have 9,=0. The foregoing expressions of (dz, dy, dz) determine of course the
values of (d’x, &y, d*z), (dx, &y, d*z), &c., and it is throughout assumed that these
values are substituted in the symbols 0,, 9;, &c., so that 9,, =09, and 9,, 9,, &c.
denote each of them an operator such as X9o,4+Y0,+70,, where (X, Y, Z) are
functions of the coordinates; such operator, in so far as it is a function of the coor-
dinates, may therefore be made an operand, and be operated upon by itself or any
other like operator.

65. Taking (a,0,¢,f,¢,h) for the second differential coefficients of U, (4, B, €, f, &, )
for the inverse coefficients, and H for the Hessian, I write also

O=(4, ... w )
V=(@,... X"~ @ X2, 9,5 0.,
0=(Q,...X?, 9, 3.

S =y +py vz,
Q=(Q,...Y9,, 9,, 0.)H, =0OH,
¥Y=(4,...Xo,H, o,H, 5, HY,

' =(a, ... #0,—10,, ©0,—Nd,, A0;—u0,),
MDCCCLXY. S5m
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and I notice that we have
TU=20, VU =_"-H, OU=3H,
V= &, V*'U=H® , V.3=0 ,
the last of which is proved, post No. 65 ; the others are found without any difficulty.
96. I form the Table

3,U=0,
. mU
0U=,-59 +m_1)~( H),
U
2U=5"5(—2) o (ED),
U 52
A=, 00 + i (—2H),
3132U=0,
32
U= ( D) + e (),
4 2 2mY 32
2U=75(2 q>_———v<1>) T o),
32 —
aza U_ < ) +(m_1)e(-%agH+nm®—_1‘ >,
2%, 92 1 2g
aaU_——(—aq> —B—ie) g Ty R HO4 VH)
2
2= (®) + g (— D),
3.U="T(—32,0—2"D 4 B*+_" vcp)+(_§2~)(
3m—6
aH__——H<1>+—VH
and assuming U=0,
2 2T — (3m—6)(3m—7) 6m— 14 32
o o (Bm—6)?° & 6m—12
QH)=QH)=—"7"— 1)2H¢+(m e YHVH— (= )qu

which are for the most part given in my former memoir; the expressions for 9,U,d,U,
which are not explicitly given, follow at once from the equations

@+3,)U=0, (3i-+20,3,493,)U=0;
those for 9,0,U, 0;U, and 0,U are new, but when the expressions for 9,0,U and 92U are
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known, that for 9,U is at once found from the equation
(34-+ 67, + 43 9,+ 302+3,) U =0.
57. Before going further, I remark that we have identically

(@ . &, Y, 2)(a, . L py—2B, vo—hy, N3— par)®
— | aw+hy+gz, hatby+fz, gr+fytez P
A s Iz s v
% g Y
=(4, . JrAp—ad, pp—L, p—9Y),
(if for shortness p=aw+By+yz, ¥=rx+uy-+rz)
= P, XAy 0)
—2pX(Q, . . XA, 1Yo, By 7)
+3(4Q, .. X B, )

58. If in this equation we take (a, 4, ¢, f; ¢, k) to be the second differential coefficients
of U, and write also («, 3, ¥)=(9,, 9,, 0,), the equation becomes

m(m=—1)Ur —(m—1)"3*= P(20,40,+20.)
—23(29,+y9,+20,)V
+3°0,
which is a general equation for the transformation of 9*(=03).
59. If with the two sides of this equation we operate on U, we obtain
m(m—1)UT'U—(m—1)*0*U=m(m—1)®U
—2(m—1)3VU

+¥3*00U;
and substituting the values

rU=20, VU=-"-H, OU=3H,
we find the before-mentioned expression of 9}U.

60. Operating with the two sides of the same equation on a function H of the order
m/, we find
m(m—1)UTH —(m—1)"H=w/(m'—1)®H
—2(m'—1)dVH
+ ¥OH;
and in particular if H is the Hessian, then writing m'=3m—6, and putting U=0, we
find the before-mentioned expression for 9°H.
61. But we may also from the general identical equation deduce the expression for
(0H)®. In fact taking H a function of the degree m' and writing

(2, B, y)=(0.H, o,H, 0. H),
S5u2
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we have
m(m—1)U(a, . .Y o -0 H, »0, HH—20H, A0, H—po,H)*— (m—1)*(0H)?
=m*OH*—2m/SHVH43%(], . . Yo H, o, H, 0, H)*;
and if H be the Hessian, then writing 7/ =3m~6 and putting also U=0, we find the
before-mentioned expression for (0H)%
62. Proof of equation

1 N

‘We have -
9,=0.9={(Br—Cp)d,+(Cr— A»)3d,+(Ap—Br)d.}.
(A(Cd,—1B3,)+p(Ad,—C,) +»(Bd,— AD,)),
which is
=n(Cd,—B',)+p(AD,—C,)+»(BD,—A"D,),
where

A'=3A=a(By—Cuw)+~(Crh—Ar)+g(Ap—DB2)
—A(iC—gB)+p(gA—aC)-Ho(aB—IA),
with the like values for B' and C'. Substituting the values
(m—1)(A, B, C)=(ax+hy+g2, kx+by+fz, ge+fy+cz),
(m—1)A'=A(Gy—B2)-+ Iy —B2)-Ho(Cy— F2)
(1m—1)B =n(3z— Ga)+ Bz — F0)+1 Bz —Ca),
(m—1)C'=2(he—Qy)+p(Br—By) +(Fr—Ey),

we have

and similarly

and then
(m—1)(C?,—BD,)= A[(FHr—3y)d, —(Az—Ex)o, ]
+u[(Br—HBy)o,—(hz—TF2)d.]
+v [(Fr—By)o,— (Gz—Cx)0, ]

= =@, B, EX0., 3, 3.)—A(2d,+d,+23.)]

+ul2z@, B, FX0, 9, 9.)—R(20,470,+70.)]

+v [2(6, F, €X0., 9, 9,)—&(20,479,+29,)]

= m(ga o '3(7\3 s VIB‘,, aya az)"‘(g, %?, @3[7\-, oy V)(wam—l-g/By-l-sz),

that is
(m—1)(Cd,—B",)=aV—(4, B, &Y, p, v)(@0,+y0,420.), and so
(m—1)(A's0,—C0,) =yV—H, B, FY*, w, v)(20,+y0,+20,),
(m—1)(B'9,—An,)=2V—(&, F, CX», w, v)(#0,+40,420.);
whence
(m=1)0, =" +py+v2)V—(Q, ... YA, @, »)*(20,+y0,+20,)
=3V —P(29,49,429,) ;
or finally

1 3
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63. This leads to the expression for 97U ; we have

1
23

92
RTEYAE
and operating herewith on U, we find

32U = m(m— n(m—1) U

(m—1)*
2(m—1)3%
A ovy
32 .
+(m_1)ev U;
or since
VU— H V:U=HO,
this is

0 U_( ) <I) + (m_ Ho.
64. We have 0,0,U=0, and thence
(070,0,0,+0;)U=0,

9,0,U=-—0%0,U—0;U;

or substituting the values of 9{9,U and 93U, we find the value of 9,0,U as given in the
Table. And then from the equation

(14632, 443,9,+32:42,)T,

that is

or

a4U=—(a‘:—|—65?52-{-4:3133-{-352){},
we find the value of 0,U, and the proof of the expressions in the Table is thus com-

pleted.
65. Proof of equation V.9=0.
‘We have
V.3=V.(Br—Cp)d, +(Ch—As)d, +(Ap—B1),)
=V.(A(p0,—0,)+B(»0,—19,) +C(7\by—y,aw))
=VA(d,—n,) +VB(d,—23,)+VC(d,—ud,);
~and then

VA=(Q, ... X w, vXa, b, g)=Hnr,
VB=(Q, ... X» w, vk, b, f)=Hp,
VC=(4, ... X w vXg, f> ¢)=Hy;

or substituting these values, we have the equation in question.
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66. Proof of expression for 0,.

We have ) 5
and thence operating on the two sides respectively with 9,, =0, we have
1
0,= —m{B(D(wbw+yby+zbz)+(Db (20,4%0,+20,)}
1
——7{03V+30.V};
or since
9.(290,+99,+20,)=0, 03=0,
this is

1 : 1 3
0= ———7 0P(0,+Y0,+29,)— =7 PO+-—70.V.
67. Proof of expression for 0,H.
Operating with 9, upon H, we have at once

3m—6
m—1

3 H=—""C o _L @3+ (3.V)H.

The remainder of the present Appendix is preliminary, or relating to the investiga-
tion of the expressions for 9,0U and 92,U, used ante, No. 31.

68. Proof of equation V*0U=PoH —Hod.
We have identically

(@, ... X w (D, ... X0, 9, 0. —[(Q, ... X%, @, vY0, O, 0,)F
=(abc—&ec.)(@, ... J¥0,—md,, 10,—»),, w0,—A0,)*;
that is
dOQ—-V:=HT;
and then multiplying by 9, and with the result operating on U, we find

POoU—-VHBU=HIOU.

Now
oU=(4, ...X9,, 9,, 0,)°U

=4, .. .Xa, b, ¢, 2f, 29, 2h);
and thence
03U=(4, ...)X0a, 05, 0c, 20f, 20g, 20h);

and observing that
H= a, ]L, g 5

hy b, f
9 I ¢
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and thence that
OH=|9%¢e, 0k 09 |+| a h g |+| @ Pk g
hy b, f ok, 9b, of h, b, f
9 /e 7 foc dg, f, d¢

=(4, #, G)X0a, Ok, 3g)+(H, B, FY0h, 05, 3f)+(&, F, €X0yg, of, dc)
=(4, ...X0a, 0b, dc, 20f, 20¢g, 20k,

we see that
O0U=0H.
Moreover

I'v= (a, ... J00,—wo,, ...)'U
= ot +ow’—2fw)
+ o(cn* +a* —2gwn )
-+ ¢(aw’+ 00> —2hnw)
+2f( =/ +grp+ b —apw)
+29( fap—gp’ +hp—bin)
+2h(  fin dgyp—h® —crw);
U= (e, ...J00,—p0,, ...)0U0
= a("3b +pd0—2uwdf)
4 &e.
= A(bdc+cdb —2f0f)
“+&ec.
=(04, 33, o€, oF, 0B, 3B, w, »),

RU=3d.

and thence

that is

Hence the equation

®o0oU—-VU=HIoU

becomes
POH—-VOU=HoD,
that is,
VR U=PoH—-HP.
69. Proof of equation 9, B2U_ : Q((IDBH —Ho®d).
‘We have
AN= (m e 5 P20, +90,+20,)

— e (@492, 4.V

iV
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and thence multiplying by 9,, =0, and with the result operating upon U, we find

. (m—1)(m—2) -, 2(m—2)
BBU.—~——(__) U — n=1)? ?
But 9U=0, and thence also V(3U)=0, thatis (V.9)U+VoU=0; moreover V.9=0,
and therefore (V.9)U=0, whence also VoU=0. Therefore

J9BOVU 4 12 VU.

0.0,U="(, s 1)QBV?U
or substituting for 9V?U its value =POH—HO®, we have the required expression for
0,0;U.

70. Proof of equation 030 U_( ((Sm —6)HOP 4-(—m+ 3)(I>BH)+ = 1)3{ (2.V)Hji.
We have

1 1 3
dy=— 1 dP(ad, +4, +20.) — = PO+, =1 2.V,

and thence multiplying by 9=0% and operating on U,

m—2

3R, U=— L ooU -4 V'L

To reduce (0. V)9*U, we have
¥(VOU)=Vo'U+ (3.V34)U
—VOU+[(0. V)O'+ V(. 3)]U
=VU+ (3. V)RrU+2V0D, U
Bz=——-—<I>(xB +9,+ 20, )+

and since

m—1
multiplying by V9, and with the result operating on U, we obtain
m—2 o b .
Voo, U=~ — ®VoU+ —;VoU;
or since VoU =0, this is

V3D, Uz_“i’— VU,
Hence
(V) =VOU+@ . V)62U+ V%U
that is

(0.V)*U=9(Vo'U)— VB"U— V%U
Substituting this value of (9. V)o*U, we find
2 m—2 2 1 3
0, U=~ _—000°U———; Po°U
+_‘“‘L (3(vorU)—va°U)
+(m ny2(— 2Vv~2U),

the three lines whereof are to be separately further reduced.
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71. For the first line we have

Y o,

92 s
sH, 9°U= -‘_(Tn——*l-)_

OU=={a-1y

and hence
2
first line of afaav=m~§—13§((m—2)ﬂaq>+¢aﬂ).
72. For the second line, we have
V(@U)=VaU+2(V.3)oU
=V0?U, since V.9=0, and therefore (V.0)oU=0;

that is
VB2U=V(B2U)=V< (m_mH)
= ﬁ—l( Vod+dVU)— I)Q(S’VH-}—ZSHVS)
or writing
U=0, VU=_"H, V3=9,
this is
. (m—2)%
VU= HO— = 1)QVH
whence also
—2)%
3(VIU)= (m 1))2(HB<I>+<I)BH) e d(VH).
Similarly
Vo'U=V(2°U)
mU
=v(ma¢ (m l)gaH)
i (VUR 4 UV(E®P)— 1)2(32V(BH)+28V36H)
or putting

¥
U=0, VU:mH, V=9,

877

and observing also that V(3H), =VOH+(V.9)H is equal to VOH, that is to OVH,

we obtain
VorU= m 1)9 (mHOP — 2<I>BH)—- l)QBVI-I-
and then from the above value of o(VorU), we find
AV =VoU=1, 2( 2Hb<I>+m<I>BH)+(m T 3(—3(VH)+3VH);

or observing that the term multiplied by -3 =1 is =—(0.V)H, we find

1)

second line of * U=, 3 1)3( —2HO® +mPOH)+ 77— 1)3( (3.V)H).

MDCCCLXY. 51
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78. For the third line, substituting for V*0U its value =PoH —Ho®P, we have

third line of afasU=—Tm—2i—21?(<I)aH—Ha<D).

74. Hence, uniting the three lines, we have
32
B§B3U = “(m—_l—)g((m —Z)HB(I)—i— (DBH)

taom( —2EOL w4 (— (. V)H)

+ gy (2m—2) D +(— 20 4-2)BOH),

and reducing, we have the above-mentioned value of 0j0,U.



